Chapter 1

Differentiable Manifolds

§1–1 Definition of Differentiable Manifolds

Differentiable manifolds are generalizations of Euclidean spaces. Roughly speaking, any given point in a manifold has a neighborhood which is homeomorphic to an open set of a Euclidean space. Hence we can establish local coordinates in a neighborhood of every point. A manifold is then the result of pasting together pieces of a Euclidean space.

We will use \mathbb{R} to represent the field of real numbers. Let

$$\mathbb{R}^m = \{ x = (x^1, \dots, x^m) \mid x^i \in \mathbb{R}, \qquad 1 \le i \le m \},$$
 (1.1)

that is, the set of all ordered m-tuples of real numbers. The number x^i is called the i-th **coordinate** of the point $x \in \mathbb{R}^m$. For any $x, y \in \mathbb{R}^m$, $a \in \mathbb{R}$, let

$$\begin{cases} (x+y)^{i} = x^{i} + y^{i}, \\ (ax)^{i} = ax^{i}. \end{cases}$$
 (1.2)

This defines addition and scalar multiplication in \mathbb{R}^m , making \mathbb{R}^m an m-dimensional vector space over \mathbb{R} .

Besides this linear structure, \mathbb{R}^m also has a standard topological structure. For $x,y\in\mathbb{R}^m,$ define

$$d(x,y) = \sqrt{\sum_{i=1}^{m} (x^{i} - y^{i})^{2}}.$$
 (1.3)

It is easy to verify that the function $d\left(x,y\right)$ satisfies the following three conditions:

1) $d(x,y) \ge 0$, the equality holds if and only if x = y;

- 2) d(x,y) = d(y,x);
- 3) for any $x, y, z \in \mathbb{R}^m$, we have the inequality $d(x, y) + d(y, z) \ge d(x, z)$.

Hence d(x,y) is a metric on \mathbb{R}^m , which makes \mathbb{R}^m a metric space. As such, \mathbb{R}^m has the natural topological structure^a: the unions of open balls $B_{x,r} = \{y \in \mathbb{R}^m | d(x,y) < r\}$ $\{x \in \mathbb{R}^m, r > 0\}$ are the open sets. The m-dimensional vector space \mathbb{R}^m with the metric (1.3) is called the m-dimensional Euclidean space.

Suppose f is a real-valued function defined on an open set $U \subset \mathbb{R}^m$. If all the k-th order partial derivatives of f exist and are continuous for $k \leq r$, then we say $f \in C^r(U)$. Here r is some positive integer. If $f \in C^r(U)$ for every positive integer r, then we say $f \in C^\infty(U)$. If f is analytic, i.e., if f can be expressed as a convergent series in a neighborhood of any point of U, then we say $f \in C^\omega(U)$.

Definition 1.1. Suppose M is a Hausdorff space. If for any $x \in M$, there exists a neighborhood U of x such that U is homeomorphic to an open set in \mathbb{R}^m , then M is called an m-dimensional **manifold** (or m-dimensional **topological manifold**).

If the homeomorphism in Definition 1.1 is $\varphi_U: U \longrightarrow \varphi_U(U)$, where $\varphi_U(U)$ is an open set in \mathbb{R}^m , we call (U, φ_U) a **coordinate chart** of M. Since φ_U is a homeomorphism, for any $y \in U$, we can define the coordinates of y to be the coordinates of $u = \varphi_U(y) \in \mathbb{R}^m$, i.e.

$$u^{i} = (\varphi_{IJ}(y))^{i}, \qquad i = 1, \dots, m.$$
 (1.4)

The $u^i, i=1,\ldots,m$, are called the **local coordinates** of the point $y\in U$. Suppose (U,φ_U) and (V,φ_V) are two coordinate charts of M. If $U\cap V\neq\varnothing$, then $\varphi_U(U\cap V)$ and $\varphi_V(U\cap V)$ are two nonempty open sets in \mathbb{R}^m , and the map

$$\varphi_V \circ \varphi_U^{-1} \Big|_{\varphi_U(U \cap V)} : \varphi_U(U \cap V) \longrightarrow \varphi_V(U \cap V)$$

defines a homeomorphism between these two open sets, with inverse given by

$$\varphi_U \circ \varphi_V^{-1} \Big|_{\varphi_V(U \cap V)} \, .$$

These are both maps between open sets in a Euclidean space. Expressed in coordinates, $\varphi_V \circ \varphi_U^{-1}$ and $\varphi_U \circ \varphi_V^{-1}$ each represents m real-valued functions

^aFor fundamental topological concepts, see for instance Munkres 1975.

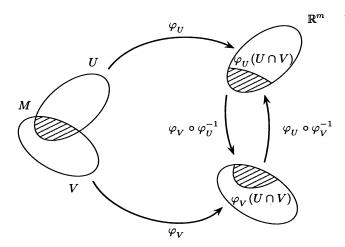


FIGURE 1.

on an open set of a Euclidean space (see Figure 1). We may write

$$y^{i} = f^{i}\left(x^{1}, \dots, x^{m}\right) = \left(\varphi_{V} \circ \varphi_{U}^{-1}\left(x^{1}, \dots, x^{m}\right)\right)^{i}, \qquad (1.5)$$
$$\left(x^{1}, \dots, x^{m}\right) \in \varphi_{U}(U \cap V);$$

$$x^{i} = g^{i}\left(y^{1}, \dots, y^{m}\right) = \left(\varphi_{U} \circ \varphi_{V}^{-1}\left(y^{1}, \dots, y^{m}\right)\right)^{i}, \qquad (1.6)$$
$$\left(y^{1}, \dots, y^{m}\right) \in \varphi_{V}(U \cap V).$$

Since $\varphi_V \circ \varphi_U^{-1}$ and $\varphi_U \circ \varphi_V^{-1}$ are homeomorphisms inverse to each other, f^i and g^i are continuous functions, and

$$\begin{cases} f^{i}(g^{1}(y^{1},...,y^{m}),...,g^{m}(y^{1},...,y^{m})) = y^{i}, \\ g^{i}(f^{1}(x^{1},...,x^{m}),...,f^{m}(x^{1},...,x^{m})) = x^{i}. \end{cases}$$
(1.7)

We say that the coordinate charts (U, φ_U) and (V, φ_V) are C^r -compatible if $U \cap V = \emptyset$, and if $f^i(x^1, \dots, x^m)$ and $g^i(y^1, \dots, y^m)$ are C^r when $U \cap V \neq \emptyset$.

Definition 1.2. Suppose M is an m-dimensional manifold. If a given set of coordinate charts $\mathcal{A} = \{(U, \varphi_U), (V, \varphi_V), (W, \varphi_W), \cdots\}$ on M satisfies the following conditions, then we call \mathcal{A} a C^r -differentiable structure on M:

1) $\{U, V, W, \ldots\}$ is an open covering of M;

- 2) any two coordinate charts in \mathcal{A} are C^r -compatible;
- 3) \mathcal{A} is **maximal**, i.e., if a coordinate chart $(\tilde{U}, \varphi_{\tilde{U}})$ is C^r -compatible with all coordinate charts in \mathcal{A} , then $(\tilde{U}, \varphi_{\tilde{U}}) \in \mathcal{A}$.

If a C^r -differentiable structure is given on M, then M is called a C^r -differentiable manifold. A coordinate chart in a given differentiable structure is called a **compatible** (admissible) coordinate chart of M. From now on, a **local coordinate system** of a point p on a differentiable manifold M refers to a coordinate system obtained from an admissible coordinate chart containing p.

Remark 1. Conditions 1) and 2) in Definition 1.2 are primary. It is not hard to show that if a set \mathcal{A}' of coordinate charts satisfies 1) and 2), then for any positive integer s, $0 < s \le r$, there exists a unique C^s -differentiable structure \mathcal{A} such that $\mathcal{A}' \subset \mathcal{A}$. In fact, suppose \mathcal{A} represents the set of all coordinate charts which are C^s -compatible with every coordinate chart in \mathcal{A}' , then \mathcal{A} is a C^s -differentiable structure uniquely determined by \mathcal{A}' . Hence, to construct a differentiable manifold, we need only choose a covering by compatible charts.

Remark 2. In this book, we also assume that any manifold M is a second countable topological space, i.e., M has a countable topological basis (see footnote on page 2).

Remark 3. If a C^{∞} -differentiable structure is given on M, then M is called a smooth manifold. If M has a C^{ω} -differentiable structure, then M is called an analytic manifold. In this book, we are mostly interested in smooth manifolds. When there is no confusion, the term manifold will mean smooth manifold.

Example 1. For $M = \mathbb{R}^m$, let U = M and φ_U be the identity map. Then $\{(U, \varphi_U)\}$ is a coordinate covering of \mathbb{R}^m . This provides a smooth differentiable structure on \mathbb{R}^m , called the **standard differentiable structure** of \mathbb{R}^m .

Example 2. Consider the m-dimensional unit sphere

$$S^{m} = \left\{ x \in \mathbb{R}^{m+1} \left| \left(x^{1} \right)^{2} + \dots + \left(x^{m+1} \right)^{2} = 1 \right. \right\}.$$

For m = 1, take the following four coordinate charts:

$$\begin{cases}
U_{1}\left\{x \in S^{1} \middle| x^{2} > 0\right\}, \varphi_{U_{1}}(x) = x^{1}, \\
U_{2}\left\{x \in S^{1} \middle| x^{2} < 0\right\}, \varphi_{U_{2}}(x) = x^{1}, \\
V_{1}\left\{x \in S^{1} \middle| x^{1} > 0\right\}, \varphi_{V_{1}}(x) = x^{2}, \\
V_{2}\left\{x \in S^{1} \middle| x^{1} < 0\right\}, \varphi_{V_{2}}(x) = x^{2}.
\end{cases}$$
(1.8)

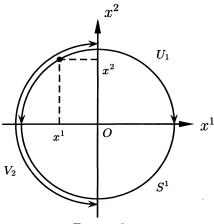


FIGURE 2.

Obviously, $\{U_1, U_2, V_1, V_2\}$ is an open covering of S^1 . In the intersection $U_1 \cap V_2$, we have (see Figure 2)

$$\begin{cases} x^2 = \sqrt{1 - (x^1)^2} > 0, \\ x^1 = -\sqrt{1 - (x^2)^2} < 0. \end{cases}$$
 (1.9)

These are both C^{∞} functions, thus $\left(U_1,\varphi_{U_1}\right)$ and $\left(V_2,\varphi_{V_2}\right)$ are C^{∞} -compatible. Similarly, any other pair of the given coordinate charts are C^{∞} -compatible. Hence these coordinate charts suffice to make S^1 a 1-dimensional smooth manifold. For m>1, the smooth structure on S^m can be defined similarly.

Example 3. The m-dimensional projective space P^m . Define a relation \sim in $\mathbb{R}^{m+1} - \{0\}$ as follows: for $x, y \in \mathbb{R}^{m+1} - \{0\}$, $x \sim y$ if and only if there exists a real number a such that x = ay. Obviously, \sim is an equivalence relation. For $x \in \mathbb{R}^{m+1} - \{0\}$, denote the equivalence class of x by

$$[x] = \left[x^1, \dots, x^{m+1}\right].$$

The m-dimensional projective space is the quotient space

$$P^{m} = (\mathbb{R}^{m+1} - \{0\}) / \sim$$

$$= \{ [x] | x \in \mathbb{R}^{m+1} - \{0\} \}.$$
(1.10)

The numbers of the (m+1)-tuple (x^1, \ldots, x^{m+1}) are called the **homogeneous** coordinates of [x]. They are determined by [x] up to a a nonzero factor. P^m is thus the space of all straight lines in \mathbb{R}^{m+1} which pass through the origin.

Let

$$\begin{cases}
U_i = \{ [x^1, \dots, x^{m+1}] | x^i \neq 0 \}, \\
\varphi_i ([x]) = (i\xi_1, \dots, i\xi_{i-1}, i\xi_{i+1}, \dots, i\xi_{m+1}),
\end{cases} (1.11)$$

where $1 \leq i \leq m+1$, $i\xi_h = x^h/x^i \ (h \neq i)$. Obviously, $\{U_i, 1 \leq i \leq m+1\}$ forms an open covering of P^m . On $U_i \cap U_j$, $i \neq j$, the change of coordinates is given by

$$\begin{cases} j\xi_h = \frac{i\xi_h}{i\xi_j}, & h \neq i, j; \\ j\xi_i = \frac{1}{i\xi_j}. \end{cases}$$
 (1.12)

Hence $\{(U_i, \varphi_i)\}_{1 \le i \le m+1}$ suffices to generate a smooth structure on P^m .

Remark. In each of the above examples, the respective coordinate charts given are in fact C^{ω} -compatible also, and so provide the structures for \mathbb{R}^m , S^m , and P^m as analytic manifolds.

Example 4 (Milnor's Exotic Sphere). There may exist distinct differentiable structures on a single topological manifold. J. Milnor gave a famous example (Milnor 1956), which shows that there exist nonisomorphic smooth structures on homeomorphic topological manifolds (see the discussion following the remark to definition 1.3 below). Hence a differentiable structure is more than a topological structure. A complete understanding of the Milnor sphere is outside the scope of this text. Here we will give only a brief description of the main ideas. [A more recent example is the existence of distinct smooth structures on \mathbb{R}^4 discovered by S. K. Donaldson (see Donaldson and Kronheimer 1991)].

Choose two antipodal points A and B in S^4 . Let

$$U_1 = S^4 - \{A\}, \qquad U_2 = S^4 - \{B\}.$$
 (1.13)

Then U_1 and U_2 form an open covering of S^4 . We wish to paste the trivial sphere bundles $U_1 \times S^3$ and $U_2 \times S^3$ together to get the 3-sphere bundle Σ^7 over S^4 .

Under the stereographic projection, U_1 and U_2 are both homeomorphic to \mathbb{R}^4 , and $U_1 \cap U_2$ is homeomorphic to $\mathbb{R}^4 - \{0\}$. Identify the elements of $\mathbb{R}^4 - \{0\}$ as quaternions, and choose an odd number κ , where $\kappa^2 - 1 \not\equiv 0 \mod 7$.

Consider the map $\tau: (\mathbb{R}^4 - \{0\}) \times S^3 \longrightarrow (\mathbb{R}^4 - \{0\}) \times S^3$, such that for every $(u, v) \in (\mathbb{R}^4 - \{0\}) \times S^3$, we have

$$\tau(u,v) = \left(\frac{u}{\|u\|^2}, \frac{u^h v u^j}{\|u\|}\right),\tag{1.14}$$

where

$$h = \frac{\kappa + 1}{2}, \qquad j = \frac{1 - \kappa}{2},\tag{1.15}$$

and in (1.14) the multiplication and the norm $||\cdot||$ are in the sense of quaternions. Obviously τ is a smooth map. We can thus paste $U_1 \times S^3$ and $U_2 \times S^3$ together using τ . It can be proved that the Σ^7 constructed in this way is homeomorphic to the 7-dimensional unit sphere S^7 , but its differentiable structure is different from the standard differentiable structure of S^7 (Example 2).

On a smooth manifold, the concept of a smooth function is well-defined. Let f be a real-valued function defined on an m-dimensional smooth manifold M. If $p \in M$, and (U, φ_U) is a compatible coordinate chart containing p, then $f \circ \varphi_U^{-1}$ is a real-valued function defined on the open subset $\varphi_U(U)$ of the Euclidean space \mathbb{R}^m . If $f \circ \varphi_U^{-1}$ is C^∞ at the point $\varphi_U(p) \in \mathbb{R}^m$, we say that the function f is C^∞ at $p \in M$.

The differentiability of the function f at the point p is independent of the choice of the compatible coordinate chart containing p. In fact, for another compatible coordinate chart (V, φ_V) containing p such that $U \cap V \neq \emptyset$, we have

$$f\circ\varphi_V^{-1}=\left(f\circ\varphi_U^{-1}\right)\circ\left(\varphi_U\circ\varphi_V^{-1}\right).$$

Since $\varphi_U \circ \varphi_V^{-1}$ is smooth, we see that $f \circ \varphi_V^{-1}$ and $f \circ \varphi_U^{-1}$ are differentiable at the same point p.

If the real-valued function f is C^{∞} at every point in M, then we call f a C^{∞} , or **smooth**, function on M. We shall denote the set of all smooth functions on M by $C^{\infty}(M)$.

Smooth real-valued functions are just important special cases of smooth maps between smooth manifolds.

Definition 1.3. Suppose $f: M \longrightarrow N$ is a continuous map from one smooth manifold M to another, N, where $\dim M = m$ and $\dim N = n$. If there exist compatible coordinate charts (U, φ_U) at the point $p \in M$ and (V, ψ_V) at $f(p) \in N$ such that the map

$$\psi_V \circ f \circ \varphi_U^{-1} : \varphi_U(U) \longrightarrow \psi_V(V)$$

^bThat is, contained in the smooth structures of the respective manifolds.

is C^{∞} at the point $\varphi_U(p)$, then the map f is called C^{∞} at p. If the map f is C^{∞} at every point p in M, then we say that f is a **smooth map** from M to N

Remark. Since $\psi_V \circ f \circ \varphi_U^{-1}$ is a continuous map from an open set $\varphi_U(U) \subset \mathbb{R}^m$ to another open set $\psi_V(V) \subset \mathbb{R}^n$, its differentiability at the point $\varphi_U(p)$ is defined. Obviously the differentiability of f at p is independent of the choice of compatible coordinate charts (U, φ_U) and (V, φ_V) .

In the case dim $M=\dim N$, if $f:M\longrightarrow N$ is a homeomorphism and f, f^{-1} are both smooth maps, then we call $f:M\longrightarrow N$ a diffeomorphism. If the smooth manifolds M and N are diffeomorphic, then we say that the corresponding smooth structures of the manifolds are **isomorphic**. In the above example, the Milnor sphere Σ^7 is homeomorphic but not diffeomorphic to S^7 . Hence their smooth structures are not isomorphic.

Another important special case of smooth maps between smooth manifolds is that of **parametrized curves** on manifolds, in which M is an open interval $(a,b) \subset \mathbb{R}^1$. A smooth map $f:(a,b) \longrightarrow N$ from M to the manifold N is a parametrized curve in the manifold N.

Now suppose M and N are m-dimensional and n-dimensional manifolds with differentiable structures $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \mathcal{A}}$ and $\{(V_{\beta}, \psi_{\beta})\}_{\beta \in \mathcal{B}}$, respectively. We can construct a new (m+n)-dimensional smooth manifold $M \times N$ by the following method. First, we see that $\{U_{\alpha} \times V_{\beta}\}_{\alpha \in \mathcal{A}, \beta \in \mathcal{B}}$ forms an open covering of the topological product space $M \times N$. Then we define maps $\varphi_{\alpha} \times \psi_{\beta} : U_{\alpha} \times V_{\beta} \longrightarrow \mathbb{R}^{m+n}$ such that

$$\varphi_{\alpha} \times \psi_{\beta}(p, q) = (\varphi_{\alpha}(p), \psi_{\beta}(q)), \qquad (1.16)$$
$$(p, q) \in U_{\alpha} \times V_{\beta}.$$

Thus $(U_{\alpha} \times V_{\beta}, \varphi_{\alpha} \times \psi_{\beta})$ is a coordinate chart of $M \times N$. It is easy to prove that all the coordinate charts obtained in this way are C^{∞} -compatible, and hence they determine a smooth differentiable structure on $M \times N$.

Definition 1.4. The smooth differentiable structure determined by the C^{∞} -compatible coordinate covering $\{(U_{\alpha} \times V_{\beta}, \varphi_{\alpha} \times \psi_{\beta})\}_{\alpha \in \mathcal{A}, \beta \in \mathcal{B}}$ of the topological product space $M \times N$ makes $M \times N$ an (m+n)-dimensional smooth manifold, called the **product manifold** of M and N.

The natural projections of the product manifold $M \times N$ onto its factors are denoted by

$$\pi_1: M \times N \longrightarrow M, \qquad \pi_2: M \times N \longrightarrow N,$$

where, for any $(x, y) \in M \times N$,

$$\pi_1(x,y) = x, \qquad \pi_2(x,y) = y.$$

Obviously these are both smooth maps.

§1–2 Tangent Spaces

At every point on a regular curve (or surface), we have the notion of the tangent line (or tangent plane). Similarly, given a differentiable structure on a topological manifold, we can approximate a neighborhood of any point by a linear space. More precisely, the concepts of the tangent space and the cotangent space can be introduced. We begin with the cotangent space.

Suppose M is an m-dimensional smooth manifold. Fix a point $p \in M$, and let f be a C^{∞} function^c defined in a neighborhood of p. Denote the set of all these functions by C_p^{∞} . Naturally, the domains of two different functions in C_p^{∞} may be different, but addition and multiplication in the function space C_p^{∞} are still well-defined. Suppose $f, g \in C_p^{\infty}$ with domains U and V respectively. Then $U \cap V$ is also a neighborhood containing p. Thus f + g and $f \cdot g$ can be defined as functions on $U \cap V$, that is, f + g and $f \cdot g \in C_p^{\infty}$.

Define a relation \sim in C_p^∞ as follows. Suppose $f,g\in C_p^\infty$. Then $f\sim g$ if and only if there exists an open neighborhood H of the point p such that $f|_H=g|_H$. Obviously \sim is an equivalence relation in C_p^∞ . We will denote the equivalence class of f by [f], which is called a C^∞ -germ at p on M. Let

$$\mathfrak{F}_p = \left. C_p^{\infty} \right/ \sim = \left\{ [f] \left| f \in C_p^{\infty} \right. \right\}.$$

Then, by defining addition and scalar multiplication, \mathcal{F}_p becomes a linear space over \mathbb{R} : for $[f], [g] \in \mathcal{F}_p, a \in \mathbb{R}$, define

$$\begin{cases}
[f] + [g] = [f+g], \\
a[f] = [af].
\end{cases}$$
(2.2)

In this definition, the right hand sides of (2.2) are independent of the choices of $f \in [f]$ and $g \in [g]$. The reader should verify that \mathcal{F}_p is an infinite-dimensional real linear space.

Suppose γ is a parametrized curve on M through a point p. Then there exists a positive number δ such that $\gamma:(-\delta,\delta)\longrightarrow M$ is a C^∞ map and $\gamma(0)=p$. Denote the set of all these parametrized curves by Γ_p .

For $\gamma \in \Gamma_p$, $[f] \in \mathcal{F}_p$, let (see Figure 3)

$$\ll \gamma, [f] \gg = \left. \frac{d(f \circ \gamma)}{dt} \right|_{t=0}, \quad -\delta < t < \delta.$$
 (2.3)

[°]Suppose f is a function defined on an open set $V \subset M$. If the function $f \circ \varphi_U^{-1}$ is C^{∞} on the open set $\varphi_U(U \cap V) \subset \mathbb{R}^m$ for any admissible coordinate chart (U, φ_U) , where $U \cap V \neq \varnothing$, then we say f is a C^{∞} function defined on V. In fact, V has a differentiable structure induced from M (see section §1-3). Thus f is a C^{∞} function on the differentiable manifold V.

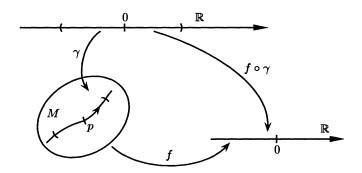


FIGURE 3.

Obviously, for a fixed γ , the value on the right hand side above is determined by [f] and independent of the choice of $f \in [f]$. Also, \ll , \gg is linear in the second variable, i.e., for arbitrary $\gamma \in \Gamma_p$, $[f], [g] \in \mathcal{F}_p$, $a \in \mathbb{R}$, we have

Let

$$\mathcal{H}_p = \{ [f] \in \mathcal{F}_p \mid \ll \gamma, [f] \gg = 0, \quad \forall \gamma \in \Gamma_p \}.$$
 (2.5)

Then \mathcal{H}_p is a linear subspace of \mathcal{F}_p .

Theorem 2.1. Suppose $[f] \in \mathcal{F}_p$. For an admissible coordinate chart (U, φ_U) , let

$$F\left(x^{1},\ldots,x^{m}\right)=f\circ\varphi_{U}^{-1}\left(x^{1},\ldots,x^{m}\right). \tag{2.6}$$

Then $[f] \in \mathcal{H}_p$ if and only if

$$\left.\frac{\partial F}{\partial x^i}\right|_{\varphi_{T^i}(p)}=0, \qquad 1\leq i\leq m.$$

Proof. Suppose $\gamma \in \Gamma_p$, with coordinate representation

$$(\varphi_{IJ} \circ \gamma(t))^{i} = x^{i}(t), \qquad -\delta < t < \delta. \tag{2.7}$$

$$\ll \gamma, [f] \gg = \frac{d}{dt} (f \circ \gamma) \Big|_{t=0}
= \frac{d}{dt} F \left(x^{1}(t), \dots, x^{m}(t) \right) \Big|_{t=0}
= \sum_{i=1}^{m} \left(\frac{\partial F}{\partial x^{i}} \Big|_{\varphi_{U}(p)} \cdot \frac{dx^{i}(t)}{dt} \Big|_{t=0} \right).$$
(2.8)

Since we may choose the appropriate γ to get any real value for $\frac{dx^i(t)}{dt}\Big|_{t=0}$, a necessary and sufficient condition for $\ll \gamma$, $[f] \gg = 0$ for arbitrary $\gamma \in \Gamma_p$ is

$$\left. \frac{\partial F}{\partial x^i} \right|_{\varphi_U(p)} = 0, \qquad 1 \le i \le m.$$

We can summarize Theorem 2.1 as follows. The subspace \mathcal{H}_p is exactly the linear space of germs of smooth functions whose partial derivatives with respect to local coordinates all vanish at p.

Definition 2.1. The quotient space $\mathcal{F}_p/\mathcal{H}_p$ is called the **cotangent space** of M at p, denoted by T_p^* (or $T_p^*(M)$). The \mathcal{H}_p -equivalence class of the function germ [f] is denoted by [f] or $(df)_p$, and is called a **cotangent vector** on M at p.

 T_p^* is a linear space. It has a linear structure induced from the linear space \mathcal{F}_p , i.e. for $[f], [g] \in \mathcal{F}_p$, $a \in \mathbb{R}$ we have

$$\begin{cases} \widetilde{[f]} + \widetilde{[g]} = (\widetilde{[f]} + \widetilde{[g]}), \\ a \cdot \widetilde{[f]} = (\widetilde{a[f]}). \end{cases}$$
 (2.9)

Theorem 2.2. Suppose $f^1, \dots, f^s \in C_p^{\infty}$ and $F\left(y^1, \dots, y^s\right)$ is a smooth function in a neighborhood of $\left(f^1(p), \dots, f^s(p)\right) \in \mathbb{R}^s$. Then $f = F\left(f^1, \dots, f^s\right) \in C_p^{\infty}$ and

$$(df)_p = \sum_{k=1}^s \left[\left(\frac{\partial F}{\partial f^k} \left(f^1(p), \cdots, f^s(p) \right) \right) \cdot (df^k)_p \right].$$
 (2.10)

Proof. Suppose the domain of f^k containing p is U_k . Then f is defined in $\bigcap_{k=1}^{s} U_k$, and for $q \in \bigcap_{k=1}^{s} U_k$,

$$f(q) = F(f^1(q), \cdots, f^s(q)).$$

Since F is a smooth function, $f \in C_p^{\infty}$. Let $a_k = \frac{\partial F}{\partial f^k} (f^1(p), \dots, f^s(p))$. Then for any $\gamma \in \Gamma_p$,

$$\ll \gamma, [f] \gg = \frac{d}{dt} \Big|_{t=0} (f \circ \gamma)
= \frac{d}{dt} \Big|_{t=0} F \left(f^1 \circ \gamma(t), \dots, f^s \circ \gamma(t) \right)
= \sum_{k=1}^s a_k \frac{d}{dt} \Big|_{t=0} \left(f^k \circ \gamma(t) \right)
= \ll \gamma, \sum_{k=1}^s a_k \left[f^k \right] \gg .$$

Thus

$$[f] - \sum_{k=1}^{s} a_k \left[f^k \right] \in \mathcal{H}_p,$$

i.e.,

$$(df)_p = \sum_{k=1}^s a_k (df^k)_p.$$

Corollary 1. For any $f, g \in C_p^{\infty}$, $a \in \mathbb{R}$, we have

$$d(f+g)_p = (df)_p + (dg)_p, (2.11)$$

$$d(af)_{p} = a \cdot (df)_{p}, \tag{2.12}$$

$$d(fg)_p = f(p) \cdot (dg)_p + g(p) \cdot (df)_p. \tag{2.13}$$

We see that (2.11) and (2.12) are the same as (2.9), and (2.13) follows directly from Theorem 2.2. $\ \Box$

Corollary 2. $\dim T_p^* = m$.

Proof. Choose an admissible coordinate chart (U, φ_U) , and define local coordinates u^i by

$$u^i(q) = (\varphi_U(q))^i = x^i \circ \varphi_U(q), \quad q \in U, \tag{2.14}$$

where x^i is a given coordinate system in \mathbb{R}^m . Then $u^i \in C_p^{\infty}$, $(du^i)_p \in T_p^*$. We

will prove that $\left\{(du^i)_p, 1 \leq i \leq m\right\}$ is a basis for T_p^* . Suppose $(df)_p \in T_p^*$. Then $f \circ \varphi_U^{-1}$ is a smooth function defined on an open set of \mathbb{R}^m . Let $F(x^1, \dots, x^m) = f \circ \varphi_U^{-1}(x^1, \dots, x^m)$. Thus

$$f = F(u^1, \dots u^m). \tag{2.15}$$

By Theorem 2.2,

$$(df)_p = \sum_{i=1}^m \left[\left(\frac{\partial F}{\partial u^i} \left(u^1(p), \cdots, u^m(p) \right) \right) \cdot (du^i)_p \right]. \tag{2.16}$$

Thus $(df)_p$ is a linear combination of the $(du^i)_p$, $i \leq i \leq m$.

If there exist real numbers $a_i, 1 \leq i \leq m$, such that

$$\sum_{i=1}^{m} a_i (du^i)_p = 0, (2.17)$$

i.e.

$$\sum_{i=1}^{m} a_i \left[u^i \right] \in \mathcal{H}_p,$$

then for any $\gamma \in \Gamma_p$, we have

$$\ll \gamma, \sum_{i=1}^{m} a_i \left[u^i \right] \gg = \sum_{i=1}^{m} a_i \left. \frac{d(u^i \circ \gamma(t))}{dt} \right|_{t=0} = 0.$$
 (2.18)

Choose $\lambda_k \in \Gamma_p, 1 \leq k \leq m$ such that

$$u^i \circ \lambda_k(t) = u^i(p) + \delta_k^i t, \tag{2.19}$$

where

$$\delta_k^i = \begin{cases} 1, & i = k, \\ 0, & i \neq k. \end{cases}$$

Then

$$\left. \frac{d(u^i \circ \lambda_k(t))}{dt} \right|_{t=0} = \delta_k^i.$$

Let $\gamma = \lambda_k$. By (2.18) $a_k = 0, 1 \le k \le m$, i.e., $\{(du^i)_p, 1 \le i \le m\}$ is linearly independent. Therefore it forms a basis for T_p^* , called the **natural basis** of T_p^* with respect to the local coordinate system u^i . Thus T_p^* is an m-dimensional linear space.

By definition, $[f] - [g] \in \mathcal{H}_p$ if and only if $\ll \gamma$, $[f] \gg = \ll \gamma$, $[g] \gg$ for all $\gamma \in \Gamma_p$, so we can define

$$\ll \gamma, (df)_p \gg = \ll \gamma, [f] \gg, \qquad \gamma \in \Gamma_p, \qquad (df)_p \in T_p^*.$$
 (2.20)

Now define a relation \sim in Γ_p as follows. Suppose $\gamma, \gamma' \in \Gamma_p$. Then $\gamma \sim \gamma'$ if and only if for any $(df)_p \in T_p^*$,

$$\ll \gamma, (df)_p \gg = \ll \gamma', (df)_p \gg .$$
 (2.21)

Obviously this is an equivalence relation. Denote the equivalence class of γ by $[\gamma]$. Hence we can define

$$\langle [\gamma], (df)_p \rangle = \ll \gamma, (df)_p \gg .$$
 (2.22)

We will prove that the $[\gamma]$, $\gamma \in \Gamma_p$, form the dual space of T_p^* . For this purpose we will use local coordinate systems.

Under the local coordinates u^i , suppose $\gamma \in \Gamma_p$ is given by the functions

$$u^i = u^i(t), \qquad 1 \le i \le m. \tag{2.23}$$

Then (2.22) can be written as

$$\langle [\gamma], (df)_p \rangle = \sum_{i=1}^m a_i \xi^i, \qquad (2.24)$$

where

$$a_i = \left(\frac{\partial (f \circ \varphi_U^{-1})}{\partial u^i}\right)_{\varphi_U(p)}, \qquad \xi^i = \left(\frac{du^i}{dt}\right)_{t=0}.$$
 (2.25)

The coefficients a_i are exactly the components of the cotangent vector $(df)_p$ with respect to the natural basis $(du^i)_p$ [see (2.16)]. Obviously, $\langle [\gamma], (df)_p \rangle$ is a linear function on T_p^* , which is determined by the components ξ^i . Choose γ such that

$$u^i(t) = u^i(p) + \xi^i t \tag{2.26}$$

with ξ^i arbitrary. Thus the $\langle [\gamma], (df)_p \rangle, \gamma \in \Gamma_p$, represent the totality of linear functionals on T_p^* and form its dual space, T_p , called the **tangent space** of M at p. Elements in the tangent space are called **tangent vectors**.

The geometric meaning of tangent vectors is quite simple: if $\gamma' \in \Gamma_p$ is given by functions

$$u^i = u'^i(t), \qquad 1 \le i \le m,$$

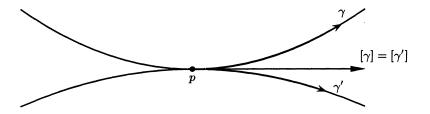


FIGURE 4.

then a necessary and sufficient condition for $[\gamma] = [\gamma']$ is

$$\left(\frac{du^i}{dt}\right)_{t=0} = \left(\frac{du'^i}{dt}\right)_{t=0}.$$

Hence the equivalence of γ and γ' means that these two parametrized curves have the same tangent vector at the point p (see Figure 4). Thus we identify a tangent vector X of M at p with the set of all parametrized curves through p with a common tangent vector.

By the discussion above, the function

$$\langle X, (df)_p \rangle, \qquad X = [\gamma] \in T_p, \ (df)_p \in T_p^*$$

is bilinear, i.e., linear in either variable. Suppose parametrized curves λ_k , $1 \le k \le m$, are given as in (2.19). Then

$$\langle [\lambda_k], (du^i)_p \rangle = \delta_k^i. \tag{2.27}$$

Therefore $\{[\lambda_k], 1 \leq k \leq m\}$ is the dual basis of $\{(du^i)_p, 1 \leq i \leq m\}$. (For the definition of dual basis, see section §2–1 of the next chapter.)

There is another meaning of the tangent vectors $[\lambda_k]$. We have

$$\langle [\lambda_k], (df)_p \rangle = \left\langle [\lambda_k], \sum_{i=1}^m \left\{ \left(\frac{\partial f}{\partial u^i} \right)_p \cdot (du^i)_p \right\} \right\rangle$$
$$= \left(\frac{\partial f}{\partial u^k} \right)_p, \tag{2.28}$$

where $\partial f/\partial u^i$ means $\partial (f \circ \varphi_U^{-1})/\partial u^i$. Thus the $[\lambda_k]$ are the partial differential operators $(\partial/\partial u^k)$ on the function germs [f]; and (2.27) can be written as

$$\left\langle \left. \frac{\partial}{\partial u^k} \right|_p, (du^i)_p \right\rangle = \delta_k^i. \tag{2.29}$$

We call the dual basis of $\{(du^i)_p, 1 \leq i \leq m\}$ in T_p the **natural basis** of the tangent space T_p under the local coordinate system (u^i) . From (2.24) we have

$$[\gamma] = \sum_{i=1}^{m} \xi^{i} \left. \frac{\partial}{\partial u^{i}} \right|_{p}.$$

Thus ξ^i are the components of the tangent vector $[\gamma]$ with respect to the natural basis. If $[\gamma'] \in T_p$ has components ξ'^i , then $[\gamma] + [\gamma']$ is determined by the components $\xi^i + \xi'^i$. Similarly the tangent vector $a \cdot [\gamma]$ $(a \in \mathbb{R})$ has components $a\xi^i$.

For simplicity, we sometimes suppress the lower index p of tangent and cotangent vectors when there is no confusion.

Definition 2.2. Suppose f is a C^{∞} -function defined near p. Then $(df)_p \in T_p^*$ is also called the **differential** of f at the point p. If $(df)_p = 0$, then p is called a **critical point** of f.

The study of critical points of smooth functions on M is an important topic in differentiable manifolds, called **Morse Theory**. The reader can refer to Milnor, 1963.

Definition 2.3. Suppose $X \in T_p$, $f \in C_p^{\infty}$. Denote

$$X f = \langle X, (df)_p \rangle. \tag{2.30}$$

X f is called the **directional derivative** of the function f along the vector X.

The following theorem gives some properties of the directional derivative.

Theorem 2.3. Suppose $X \in T_p$, $f, g \in C_p^{\infty}$, $\alpha, \beta \in \mathbb{R}$. Then

- 1) $X(\alpha f + \beta g) = \alpha \cdot Xf + \beta \cdot Xg;$
- 2) $X(fg) = f(p) \cdot Xg + g(p) \cdot Xf$.

Proof. These follow from Corollary 1 of Theorem 2.2 directly.

Remark 1. Statement 1) of Theorem 2.3 indicates that a tangent vector X can also be viewed as a linear operator on C_p^{∞} . Using 1) and 2), we see that the result of X operating on any constant function c is 0.

Remark 2. Frequently, in the literature^d, properties 1) and 2) are used to define tangent vectors. In fact, all the operators on C_p^{∞} satisfying these two properties form a linear space dual to T_p^* , which must then be identical to T_p .

^dFor example, see Chevalley 1946.

Under local coordinates u^i , a tangent vector $X = [\gamma] \in T_p$ and a cotangent vector $a = df \in T_p^*$ have linear representations in terms of natural bases:

$$X = \sum_{i=1}^{m} \xi^{i} \frac{\partial}{\partial u^{i}}, \quad a = \sum_{i=1}^{m} a_{i} du^{i}, \qquad (2.31)$$

where

$$\xi^i = \frac{d(u^i \circ \gamma)}{dt}, \quad a_i = \frac{\partial f}{\partial u^i}.$$

Under another local coordinate system u'^i , if the components of X and a with respect to the corresponding natural bases are ξ'^i and a'_i , respectively, then they satisfy the following transformation rules:

$$\xi'^{j} = \sum_{i=1}^{m} \xi^{i} \frac{\partial u'^{j}}{\partial u^{i}}, \qquad (2.32)$$

$$a_i = \sum_{j=1}^m a_j' \frac{\partial u'^j}{\partial u^i},\tag{2.33}$$

where

$$\frac{\partial u'^j}{\partial u^i} = \frac{\partial (\varphi_U' \circ \varphi_U^{-1})^j}{\partial u^i}$$

is the Jacobian matrix of the change of coordinates $\varphi_U' \circ \varphi_U^{-1}$. In classical tensor analysis, the vectors satisfying (2.32) are called **contravariant**, and those satisfying (2.33) are called **covariant**, vectors.

Smooth maps between smooth manifolds induce linear maps between tangent spaces and between cotangent spaces. Suppose $F:M\longrightarrow N$ is a smooth map, $p\in M$, and q=F(p). Define the map $F^*:T_q^*\longrightarrow T_p^*$ as follows:

$$F^*(df) = d(f \circ F), \qquad df \in T_q^*. \tag{2.34}$$

Obviously this is a linear map, called the differential of the map F.

Consider next the adjoint of F^* , namely the map $F_*: T_p \longrightarrow T_q$ defined for $X \in T_p$, $a \in T_q^*$ as follows:

$$\langle F_* X, a \rangle = \langle X, F^* a \rangle. \tag{2.35}$$

 F_* is called the **tangent map** induced by F.

Suppose u^i and v^{α} are local coordinates near p and q, respectively. Then the map F can be expressed near p by the functions

$$v^{\alpha} = F^{\alpha} \left(u^{1}, \dots, u^{m} \right), \qquad 1 \leq \alpha \leq n.$$
 (2.36)

Thus the action of F^* on the natural basis $\{dv^{\alpha}, 1 \leq \alpha \leq n\}$ is given by

$$F^*(dv^{\alpha}) = d(v^{\alpha} \circ F)$$

$$= \sum_{i=1}^{m} \left(\frac{\partial F^{\alpha}}{\partial u^i}\right)_p du^i. \tag{2.37}$$

The matrix representation of F^* in the natural bases $\{dv^{\alpha}\}$ and $\{du^i\}$ is exactly the Jacobian matrix $(\partial F^{\alpha}/\partial u^i)_p$.

Similarly, the action of F_* on the natural basis $\{\partial/\partial u^i\}$ is given by

$$\left\langle F_* \left(\frac{\partial}{\partial u^i} \right), dv^{\alpha} \right\rangle = \left\langle \frac{\partial}{\partial u^i}, F^*(dv^{\alpha}) \right\rangle$$

$$= \sum_{j=1}^m \left\langle \frac{\partial}{\partial u^i}, du^j \right\rangle \left(\frac{\partial F^{\alpha}}{\partial u^j} \right)_p$$

$$= \left\langle \sum_{\beta=1}^n \left(\frac{\partial F^{\beta}}{\partial u^i} \right)_p \frac{\partial}{\partial v^{\beta}}, dv^{\alpha} \right\rangle,$$

i.e.,

$$F_* \left(\frac{\partial}{\partial u^i} \right) = \sum_{\beta=1}^n \left(\frac{\partial F^{\beta}}{\partial u^i} \right)_p \frac{\partial}{\partial v^{\beta}}.$$
 (2.38)

Hence the matrix representation of the tangent map F_* under the natural bases $\{\partial/\partial u^i\}$ and $\{\partial/\partial v^\alpha\}$ is still the Jacobian matrix $(\partial F^\alpha/\partial u^i)_p$.

§1–3 Submanifolds

Before discussing submanifolds, we will first study tangent maps induced by smooth maps between smooth manifolds. Given a smooth map $\varphi: M \longrightarrow N$, for any point $p \in M$ there exists an induced tangent map between the corresponding tangent spaces, $\varphi_*: T_p(M) \longrightarrow T_q(N)$, where $q = \varphi(p)$. The crucial point is that the properties of the tangent map φ_* at $p \in M$ determine the properties of the map φ in a neighborhood of p. A classical result in this regard is the **inverse function theorem** in calculus.

Theorem 3.1. Suppose W is an open subset of \mathbb{R}^n and $f: W \longrightarrow \mathbb{R}^n$ is a smooth map. If at a point $x_0 \in W$ the determinant of the Jacobian matrix is nonzero, i.e.,

$$\det \left. \left(\frac{\partial f^i}{\partial x^j} \right) \right|_{x_0} \neq 0,$$