Chapter 1

Differentiable Manifolds

8§1-1 Definition of Differentiable Manifolds

Differentiable manifolds are generalizations of Euclidean spaces. Roughly
speaking, any given point in a manifold has a neighborhood which is home-
omorphic to an open set of a Euclidean space. Hence we can establish local
coordinates in a neighborhood of every point. A manifold is then the result of
pasting together pieces of a Euclidean space.

We will use R to represent the field of real numbers. Let

R™ = {z=(z',...,2™)|z' €R, 1<i<m}, (1.1)

that is, the set of all ordered m-tuples of real numbers. The number z is called
‘the i-th coordinate of the point z € R™. For any z,y € R™,a € R, let"

(@+y)' =2+, w2)
(az)’ = az’. '

This defines addition and scalar multiplication in R™, making R™ an m-
dimensional vector space over R.
Besides this linear structure, R™ also has a standard topological structure.

For z,y € R™, define
m
d(z,y) = | Y (= —y)". (1.3)
=1

It is easy to verify that the function d (z,y) satisfies the following three condi-
tions:

1) d(z,y) > 0, the equality holds if and only if z = y;
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2) d(z,y) = d(y, );
3) for any z,y, z € R™, we have the inequality d(z,y) + d(y, z) > d(=, z).

Hence d(z,y) is a metric on R™, which makes R™ a metric space. As such,
IR™ has the natural topological structure®: the unions of open balls B, , =
{y €e R™|d(z,y) <7} (xr € R™,r > 0) are the open sets. The m-dimensional
vector space R™ with the metric (1.3) is called the m-dimensional Euclidean
space.

Suppose f is a real-valued function defined on an open set U C R™. If all
the k-th order partial derivatives of f exist and are continuous for k£ < r, then
we say f € C" (U). Here r is some positive integer. If f € C" (U) for every
positive integer r, then we say f € C®(U). If f is analytic, i.e., if f can be
expressed as a convergent series in a neighborhood of any point of U, then we
say f € C¥(U).

Definition 1.1. Suppose M is a Hausdorff space. If for any = € M, there ex-
ists a neighborhood U of z such that U is homeomorphic to an open set in R™,
then M is called an m-dimensional manifold (or m-dimensional topological
manifold).

If the homeomorphism in Definition 1.1is ¢, : U — ¢, (U), where ¢, (U)
is an open set in R™, we call (U,¢,;) a coordinate chart of M. Since ¢,
is a homeomorphism, for any y € U, we can define the coordinates of y to be
the coordinates of u = ¢ (y) € R™, i.e.

W= (o, @), i=1,...,m. (1.4)

The vt,i=1,...,m, are called the local coordinates of the point y € U.
Suppose (U, ¢, ) and (V, ¢,,) are two coordinate charts of M. fUNV # o,

then ¢, (UNV) and ¢, (UNV) are two nonempty open sets in R™, and the

map

tp(UNV) — o, (UNV)

~1
o
v 2P0 oy wavy

defines a homeomorphism between these two open sets, with inverse given by

-1
v o wony|

These are both maps between open sets in a Euclidean space. Expressed
in coordinates, ¢, o <p["jl and ¢, o<,o‘_,1 each represents m real-valued functions

2For fundamental topological concepts, see for instance Munkres 1975.
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on an open set of a Euclidean space (see Figure 1). We may write

y'=fi(z',...,2™) = ((pvogoU (z*,... ,xm))z, ‘ (1.5)
(z*,...,2™) e o, (UNV);

=g (... ,y™) = (cho<pV (yl,...,ym))', (1.6)
@', y™) €@, (UNV).

Since ¢,, o (p,}l and @, o go“,l are homeomorphisms inverse to each other, f?
and g¢ are continuous functions, and

fi (gl (yli"' ,ym) PR ’gm (yla'” 7ym)) = yiy
g (fH(z'...,z™), -, " (... ,2™)) =2
We say that the coordinate charts (U, ;) and (V, ¢,,) are C"-compatible

ifUNV =@, and if fi (z?,... ,2™) and ¢ (y*,... ,y™) are C" when UNV #
.

(1.7)

Definition 1.2. Suppose M is an m-dimensional manifold. If a given set
of coordinate charts A = {(U,¢,), (V,0,,), W,0,,), -+ } on M satisfies the
following conditions, then we call A a C"-differentiable structure on M:

1) {U,V,W,...} is an open covering of M;
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2) ény two coordinate charts in A are C"-compatible;
3) A is maximal, i.e., if a coordinate chart (U,cpl.j) is C"-compatible
with all coordinate charts in A, then (U, <p(.]) €A

If a C7-differentiable structure is given on M, then M is called a C"-
differentiable manifold. A coordinate chart in a given differentiable struc-
ture is called a compatible (admissible) coordinate chart of M. From
now on, a local coordinate system of a point p on a differentiable manifold
M refers to a coordinate system obtained from an admissible coordinate chart
containing p.

Remark 1. Conditions 1) and 2) in Definition 1.2 are primary. It is not hard
to show that if a set A’ of coordinate charts satisfies 1) and 2), then for any
positive integer s, 0 < s < r, there exists a unique C*-differentiable structure
A such that A’ C A. In fact, suppose A represents the set of all coordinate
charts which are C*-compatible with every coordinate chart in A’, then A is a
Cs-differentiable structure uniquely determined by A’. Hence, to construct a
differentiable manifold, we need only choose a covering by compatible charts.

Remark 2. In this book, we also assume that any manifold M is a second
countable topological space, i.e., M has a countable topological basis (see
footnote on page 2).

Remark 3. If a C*°-differentiable structure is given on M, then M is called
a smooth manifold. If M has a C¥-differentiable structure, then M is called
an analytic manifold. In this book, we are mostly interested in smooth
manifolds. When there is no confusion, the term manifold will mean smooth
manifold.

Example 1. For M = R™, let U = M and ¢, be the identity map. Then

{U,¢,)} is a coordinate covering of R™. This provides a smooth differen-
tiable structure on R™, called the standard differentiable structure of
R™.

Example 2. Consider the m-dimensional unit sphere
sm={ze R (@) +- + (™) =1}
For m = 1, take the following four coordinate charts:
Ur{z € §'|2% > 0}, (z) = ',
Uy {zeS'|z?> <0} oy, (@) = z!,
Vi{z €S|z >0} ,p, (z) =2,
Va{z e S'|z' <0} Py, (@) = z2.

(1.8)
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Obviously, {U;,Us,V;,Va2} is an open covering of S'. In the intersection
U1 N Vs, we have (see Figure 2)

22 =1/1-(z1)® >0, ‘ 1.9)
o' =—/1-(22)% <0.

These are both C* functions, thus (U1,<PU1) and (V2,<PV2) are C°-

compatible. Similarly, any other pair of the given coordinate charts are C°°-
compatible. Hence these coordinate charts suffice to make S' a 1-dimensional
smooth manifold. For m > 1, the smooth structure on S™ can be defined
similarly.

Example 3. The m-dimensional projective space P™. Define a relation ~ in
R™*! — {0} as follows: for z,y € R™*! — {0}, z ~ y if and only if there exists
a real number a such that x = ay. Obviously, ~ is an equivalence relation.
For z € R™*! — {0}, denote the equivalence class of = by

[z] = [z}, ..., z™].

The m-dimensional projective space is the quotient space

P™ = (Rm+1 _ {0})/ ~ .

= {[z] |z € R™"" — {0} }. (1.10)



6 : Chapter 1: Differentiable Manifolds

!
The numbers of the (m+1)-tuple (z?,...,z™*+!) are called the homogeneous
coordinates of [z]. They are determined by [z] up to a a nonzero factor. P™
is thus the space of all straight lines in R™*! which pass through the origin.
Let

U; = Lo, z™ |2t #£0),
wi ([z]) = (15 --- 5 ili15 &it1, - 5 imt1)
where 1 < i < m+ 1, ;& = z"/z* (h #14). Obviously, {U;,1 <i<m+1}
forms an open covering of P™. On U; NUj, ¢ # j, the change of coordinates is
given by 2

jn = fg’f, bt i, d;
‘1’ (1.12)
& = z_ﬁj

Hence {(Ui, ¥i)};<i<m41 Suffices to generate a smooth structure on P™.

Remark. In each of the above examples, the respective coordinate charts
given are in fact C“-compatible also, and so provide the structures for R™,
S™, and P™ as analytic manifolds.

Example 4 (Milnor’s Exotic Sphere). There may exist distinct differen-
tiable structures on a single topological manifold. J. Milnor gave a famous
example (Milnor 1956), which shows that there exist nonisomorphic smooth
structures on homeomorphic topological manifolds (see the discussion follow-
ing the remark to definition 1.3 below). Hence a differentiable structure is
more than a topological structure. A complete understanding of the Milnor
sphere is outside the scope of this text. Here we will give only a brief descrip-
tion of the main ideas. [A more recent example is the existence of distinct
smooth structures on R* discovered by S. K. Donaldson (see Donaldson and
Kronheimer 1991)].
Choose two antipodal points A and B in S*. Let

Up=S*—{4}, U.=8*—{(B}. (1.13)

Then U; and U, form an open covering of S*. We wish to paste the trivial
sphere bundles U; x S® and U, x S® together to get the 3-sphere bundle 7
over S*.

Under the stereographic projection, U; and U, are both homeomorphic
to R%, and U; N U, is homeomorphic to R* — {0}. Identify the elements of
R*—{0} as quaternions, and choose an odd number &, where x> —1 # 0 mod 7.
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Consider the map 7 : (R* — {0}) x $® — (R* — {0}) x 53, such that for every
(u,v) € (R* — {0}) x S%, we have

u  uhvud
) = (m*z’ W) ! (1.14)

where

b= n—2|- 1 , C_ 1 . n’
and in (1.14) the multiplication and the norm |||| are in the sense of quaternions.
Obviously 7 is a smooth map. We can thus paste U; x S® and U, x S? together
using 7. It can be proved that the ¥7 constructed in this way is homeomorphic
to the 7-dimensional unit sphere S7, but its differentiable structure is different
from the standard differentiable structure of S” (Example 2).

(1.15)

On a smooth manifold, the concept of a smooth function is well-defined.
Let f be a real-valued function defined on an m-dimensional smooth manifold
M. Ifpe€ M, and (U,y,,) is a compatible coordinate chart containing p, then
fo <pl‘]1 is a real-valued function defined on the open subset ¢, (U) of the
Euclidean space R™. If f o <pl“}1 is C™ at the point ¢, (p) € R™, we say that
the function f is C™ at p € M. '

The differentiability of the function f at the point p is independent of the
choice of the compatible coordinate chart containing p. In fact, for another
compatible coordinate chart (V,¢,,) containing p such that U NV # @, we
have

fooyt = (fowyt)o(pyovyt).

Since ¢, o <p;1 is smooth, we see that f o <p‘—/1 and fo ‘Pt—fl are differentiable
at the same point p.

If the real-valued function f is C*° at every point in M, then we call f
a C*°, or smooth, function on M. We shall denote the set of all smooth
functions on M by C*°(M).

Smooth real-valued functions are just important special cases of smooth
maps between smooth manifolds.

Definition 1.3. Suppose f : M — N is a continuous map from one smooth
manifold M to another, N, where dim M = m and dim N = n. If there exist
compatible® coordinate charts (U, ;) at the point p € M and (V,9v) at
f(p) € N such that the map

v o fouyt iy (U) — vy (V)

bThat is, contained in the smooth structures of the respective manifolds.
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i
!

is C° at the point ¢y (p), then the map f is called C™ at p. If the map f is
C® at every point p in M, then we say that f is a smooth map from M to
N.

Remark. Since 9y o fo <pl‘]1 is a continuous map from an open set ¢, (U) C
R™ to another open set ¥y (V) C R", its differentiability at the point ¢, (p)
is defined. Obviously the differentiability of f at p is independent of the choice
of compatible coordinate charts (U, ;) and (V,¢,,).

In the case dim M = dim N, if f : M — N is a homeomorphism and f,
f~! are both smooth maps, then we call f : M — N a diffeomorphism.
If the smooth manifolds M and N are diffeomorphic, then we say that the
corresponding smooth structures of the manifolds are isomorphic. In the
above example, the Milnor sphere X7 is homeomorphic but not diffeomorphic
to S7. Hence their smooth structures are not isomorphic.

Another important special case of smooth maps between smooth manifolds
is that of parametrized curves on manifolds, in which M is an open interval
(a,b) c R!. A smooth map f : (a,b) — N from M to the manifold N is a
parametrized curve in the manifold V.

Now suppose M and N are m-dimensional and n-dimensional manifolds
with differentiable structures {(Ua, ¢4 )}ocn and {(Vs,¥s)}scp, respectively.
We can construct a new (m + n)-dimensional smooth manifold M x N by the
following method. First, we see that {Us x Vj},c ABeB forms an open covering
of the topological product space M x N. Then we define maps ¢, X 3 :
Uy %X Vg — R™*" such that

Yo X Yp(P,q) = (Pa (), ¥s(9)), (1.16)
(p,q) € Uy x Vs.

Thus (Us X V3,9, X ¥3) is a coordinate chart of M x N. It is easy to prove
that all the coordinate charts obtained in this way are C'°°-compatible, and
hence they determine a smooth differentiable structure on M x N.

Definition 1.4. The smooth differentiable structure determined by the C'*°-
compatible coordinate covering {(Uy X V3, pa X ¥3) }aca,ges of the topological
product space M x N makes M x N an (m +n)-dimensional smooth manifold,
called the product manifold of M and N.

The natural projections of the product manifold M x N onto its factors are
denoted by

» m:MxN—M, me: M XxN— N,
where, for any (z,y) € M x N,
m(z,y) ==z,  m(z,y) =y
Obviously these are both smooth maps.



81-2: Tangent Spaces l 9

§1-2 Tangent Spaces

At every point on a regular curve (or surface), we have the notion of the
tangent line (or tangent plane). Similarly, given a differentiable structure on
a topological manifold, we can approximate a neighborhood of any point by
a linear space. More precisely, the concepts of the tangent space and the
cotangent space can be introduced. We begin with the cotangent space.

Suppose M is an m-dimensional smooth manifold. Fix a point p € M, and
let f be a C* function® defined in a neighborhood of p. Denote the set of all
these functions by Cp°. Naturally, the domains of two different functions in
Cp° may be different, but addition and multiplication in the function space Cp°
are still well-defined. Suppose f, g € Cp° with domains U and V respectively.
Then U NV is also a neighborhood containing p. Thus f + g and f - g can be
defined as functions on U NV, that is, f + g and f-g € Cp°.

Define a relation ~ in C3° as follows. Suppose f,g € Cp°. Then f ~ g
if and only if there exists an open neighborhood H of the point p such that
fly = gl - Obviously ~ is an equivalence relation in Cp°. We will denote the
equivalence class of f by [f], which is called a C*°-germ at p on M. Let

Fp =G ~={lAllf e C°}

Then, by defining addition and scalar multiplication, ¥, becomes a linear space
over R: for [f],[g] € Fp,a € R, define

F1+161 = [ + 3],
{ alf] = [af) 22

In this definition, the right hand sides of (2.2) are independent of the choices of
f € [f] and g € [g]. The reader should verify that ¥, is an infinite-dimensional
real linear space.

Suppose v is a parametrized curve on M through a point p. Then there
exists a positive number § such that v : (—6,6) — M is a C*™ map and
7(0) = p. Denote the set of all these parametrized curves by I'y.

For v € T, [f] € Fp, let (see Figure 3)

<<7,[f]>>:fli%%—’Zl , —d<t<é. (2.3)
t=0

¢Suppose f is a function defined on an open set V. C M. If the functlon fo [
C on the open set ¢, (UNV) C R™ for any admissible coordinate chart (U, qu), where
UNYV # @, then we say f is a C* function defined on V. In fact, V has a differentiable
structure induced from M (see section §1-3). Thus f is a C* function on the differentiable
manifold V.
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Obviously, for a fixed -, the value on the right hand side above is determined
by [f] and independent of the choice of f € [f]. Also, < , >> is linear in the
second variable, i.e., for arbitrary v € I'p, [f],[g9] € Fp, a € R, we have

L%+ > =<7[f1>+ <79 >,
L v alfl>»=a<7,[f]>. (2.4)

Let
Hp={lfl€Fp | <7[f]>=0, Vyel,}. (2.5)
Then }, is a linear subspace of F.

Theorem 2.1. Suppose [f] € F,. For an admissible coordinate chart (U, p,;),
let

F(xl,...,zm):fogou‘l (z',...,z™). (2.6)
Then [f] € Hp if and only if

OF

- = 1<.< .
pye 0, <i<m

ey (P)

Proof. Suppose v € I'p, with coordinate representation

(py ov(®) = 2i(t), —6<t<8. (2.7)
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<yl > = 2(fom)

t=0

d ., m
= ZF (&' (t),...,2a™ (1)
m ( OF
:Z(Bw’

i=1

(2.8)

t=0

-)

Since we may choose the appropriate  to get any real value for %ﬂlt_o, a

_dzi(t)
dt

ey (P)

necessary and sufficient condition for < v, [f] > = 0 for arbitrary v € I'p, is

OF

ey ()

O

We can summarize Theorem 2.1 as follows. The subspace }, is exactly
the linear space of germs of smooth functions whose partial derivatives with
respect to local coordinates all vanish at p.

Definition 2.1. The quotient space F,/3, is called the cotangent space of
M at p, denoted by T, (or T, (M)). The Hp-equivalence class of the function

germ [f] is denoted by m or (df)p, and is called a cotangent vector on M
at p.

T is a linear space. It has a linear structure induced from the linear space
Fp, i.e. for [f],[g] € Fp, a € R we have

{[f] +lal = (A1 1D, 9)
a-[f] = (a[f]-

Theorem 2.2. Suppose f',---,f* € CP and F (y',---,y°) is a smooth
function in a meighborhood of (f'(p),---,f°(p)) € R*. Then f =
F(f*--,f°) € C and

s

@n=3 [ (o5 (PO @) @] )

k=1
Proof Suppose the domam of f*¥ containing p is Uy. Then f is defined in
ﬂ Ui, and for q € ﬂ Us, '

\

f@=F(f' ), - ,r@).
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o

Since F' is a smooth function, f € Cg°. Let a = ngE (), , f(m)-

Then for any v € ['p,

(for)

t=0

<<77[f]>>= r

F(floqy(®), -, f o)

(F* o (1))

t=0

I

M%
S

&~

k=1

=< 7,zs:ak [F¥] > .
k=1
Thus
[f1- ; ax [f*] € 3y,
ie., _

@) = ar(df*),.
k=1

Corollary 1. For any f,g € C}°, a € R, we have

d(f + 9)p = (df)p + (dg)p,
d(af)p = a- (df)p,
d(f9)p = f(p) - (d9)p + 9(P) - (df)p-

(2.11)
(2.12)
(2.13)

We see that (2.11) and (2.12) are the same as (2.9), and (2.13) follows

directly from Theorem 2.2. O

Corollary 2. dim 7T, = m.

Proof. Choose an admissible coordinate chart (U, goU), and define local coor-

dinates u* by

u'(q) = (o, () =2 o, (q), g€,

(2.14)
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where z is a given coordinate system in R™. Then u € C3°, (du'), € T;. We
will prove that {(du®),,1 <i < m} is a basis for T} .

Suppose (df), € T,;. Then fo <p51 is a smooth function defined on an open
set of R™. Let F (z,...,2™) = focp[‘jl(:vl,... ,™). Thus

f=F@t,...u™). (2.15)
By Theorem 2.2,

@ =3 [(55 o, @) @] o)

i=1

Thus (df), is a linear combination of the (du’),,i <i < m.
If there exist real numbers a;,1 < i < m, such that

m
> ai(du’), =0, (2.17)
=1
i.e.
m
Zai [u’] € Hp,
=1
then for any v € I';,, we have
< ’y,Zai [u'] > = Zai (L;tl(—ﬁ =0. (2.18)
i=1 i=1 t=0
Choose A € T'p,1 < k < m such that
u® o A\g(t) = u'(p) + 6it, (2.19)
where
si={b 1=k
0, i#k.
Then
d(u? o M (t)) _ i
dt Tk
t=0

Let v = Ax. By (2.18) ar = 0,1 <k < m, ie., {(du’)p, 1 <i < m} is linearly
independent. Therefore it forms a basis for T}, called the natural hésis of Ty
with respect to the local coordinate system u®. Thus T, is an m-dimensional
linear space. O
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By definition, [f] — [g] € 3, if and only if K 7,[f] > = <K v,[g] > for all
v € T'p, so we can define

< Y, (df)P > =< Y, [f] >>7 Y € FP7 (df)P € T; (220)

Now define a relation ~ in I', as follows. Suppose 7v,7" € I',. Then v ~ +' if
and only if for any (df), € T},

L7, (df)p > = <, (df)p > (2.21)

Obviously this is an equivalence relation. Denote the equivalence class of v by
[v]. Hence we can define

(0] (df)p) =<7, (df)p > . (2.22)

We will prove that the [y],y € ', form the dual space of T;. For this purpose
we will use local coordinate systems.
Under the local coordinates u®, suppose v € T',, is given by the functions

ut = ui(t), 1<i<m. (2.23)

Then (2.22) can be written as
(), (d)p) =Y ai?, (2.24)
=1

where

3(f°‘PL_,1 ; du’
“( ou’ o oe=(T). (229
ey (P)

The coefficients a; are exactly the components of the cotangent vector (df),
with respect to the natural basis (du?), [see (2.16)]. Obviously, ([v], (df),) is
a linear function on T}y, which is determined by the components &, Choose v
such that

ui(t) = u'(p) + &'t (2.26)

with ¢ arbitrary. Thus the ([v], (df)p),y € T'p, represent the totality of linear
functionals on T, and form its dual space, T}, called the tangent space of M
at p. Elements in the tangent space are called tangent vectors.

The geometric meaning of tangent vectors is quite simple: if 4" € ['p is

given by functions

ut =u'i(t), 1<i<m,
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FIGURE 4.

then a necessary and sufficient condition for [y] = [y'] is

du® _(du"t
dt ),o \ dt ),

Hence the equivalence of v and 7' means that these two parametrized curves
have the same tangent vector at the point p (see Figure 4). Thus we identify
a tangent vector X of M at p with the set of all parametrized curves through
p with a common tangent vector.

By the discussion above, the function

(X,(df)p), X =D)€Tp (df)p €Ty

is bilinear, i.e., linear in either variable. Suppose parametrized curves g, 1 <
k < m, are given as in (2.19). Then

(Me), (dud)p) = 6. (2.27)

Therefore {[\x], 1 < k < m} is the dual basis of {(du')p, 1 <i<m}. (For
the definition of dual basis, see section §2-1 of the next chapter.)
There is another meaning of the tangent vectors [Ax]. We have

([Ak]7 (df)l?) = <[Ak], Z { (31{1) : (du’)P}>

=1

_ (6%%),,’ (2.28)

where 0 /0u’ means O(f op, 1)/ Ou’. Thus the [A;] are the partial differential
operators (0/0u*) on the function germs [f]; and (2.27) can be written as

9
Ou*

,(dui),,> = . ' (229)
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We call the dual basis of {(du?)p, 1 <i < m} in T, the natural basis of the
tangent space T}, under the local coordinate system (u?). From (2.24) we have

[v] = Zﬁ"

Thus ¢ are the components of the tangent vector [y] with respect to the
natural basis. If [y'] € T, has components ¢'¢, then [y] + [y'] is determined
by the components & + ¢'¢. Similarly the tangent vector a - [y] (a € R) has
components a&®.

For simplicity, we sometimes suppress the lower index p of tangent and
- cotangent vectors when there is no confusion.

0
Out

P

Definition 2.2. Suppose f is a C*°-function defined near p. Then (df), € T,
is also called the differential of f at the point p. If (df), = 0, then p is called
a critical point of f.

The study of critical points of smooth functions on M is an important
topic in differentiable manifolds, called Morse Theory. The reader can refer
to Milnor, 1963.

Definition 2.3. Suppose X € Tj, f € C;°. Denote

X f=(X,(df)p)- (2.30)

X f is called the directional derivative of the function f along the vector

X.
The following thedrem gives some properties of the directional derivative.
Theorem 2.3. Suppose X € Ty, f,g9 € C7°, o, € R. Then

1) X(af+Bg9)=a-Xf+8-Xg;
2) X(fg)=f(p)-Xg+g(p)-Xf.

Proof. These follow from Corollary 1 of Theorem 2.2 directly. O

Remark 1. Statement 1) of Theorem 2.3 indicates that a tangent vector X
can also be viewed as a linear operator on Cp°. Using 1) and 2), we see that
the result of X operating on any constant function c is 0.

Remark 2. Frequently, in the literatured, properties 1) and 2) are used to
define tangent vectors. In fact, all the operators on Cp° satisfying these two
properties form a linear space dual to T,;, which must then be identical to T}.

dFor example, see Chevalley 1946.
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Under local coordinates u?, a tangent vector X = [y] € T}, and a cotangent
vector a = df € T, have linear representations in terms of natural bases:

X = i{iz)%—i, a= iaidui , (2.31)

where
. d(utor) of
T —— e . Fr——
&= a0 BT au
Under another local coordinate system u'?, if the components of X and a with

respect to the corresponding natural bases are ¢'* and al, respectively, then
they satisfy the following transformation rules:

B mo Huld
1§ — § : i
6 prt § aui bl (2'32)
=L, Ould
a; = E a’~—-—i, (233)
j=1 ! au

where
dui gy oe,'y
out Out
is the Jacobian matrix of the change of coordinates ¢y, o <pl‘]1. In classical
tensor analysis, the vectors satisfying (2.32) are called contravariant, and
those satisfying (2.33) are called covariant, vectors.
Smooth maps between smooth manifolds induce linear maps between tan-

gent spaces and between cotangent spaces. Suppose F': M — N is a smooth
map, p € M, and ¢ = F(p). Define the map F* : Ty — T, as follows:

F*(df)=d(foF), dfeT;. (2.34)

Obviously this is a linear map, called the differential of the map F.
Consider next the adjoint of F*, namely the map F, : T, — T, defined
for X € Ty, a € T as follows:

(FvX,a) = (X, F*a). (2.35)

F, is called the tangent map induced by F.
Suppose u’ and v* are local coordinates near p and g, respectively. Then
the map F' can be expressed near p by the functions !

v* =F* (u',...,u™), 1<a<n. (2.36)
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Thus the’action of F* on the natural basis {dv®, 1 < a < n} is given by
F*(dv®) =d(v* o F)

=> (%F - ) du’. (2.37)
=1 N Jp

The matrix representation of F* in the natural bases {dv®} and {du'} is exactly
the Jacobian matrix (0F*/du’),.
Similarly, the action of F, on the natural basis {0/0u’} is given by

(7 (o) ) = (o
> (g
> (%) —>

o T (OFF a
F. <5u—) = ;:3 (W) 38" (2:38)

Hence the matrix representation of the tangent map F. under the natural bases
{8/0u'} and {8/0v?} is still the Jacobian matrix (OF%/du’),.

F*(dv")>

i.e.,

§1-3 Submanifolds

Before discussing submanifolds, we will first study tangent maps induced by
smooth maps between smooth manifolds. Given a smooth map ¢ : M —
N, for any point p € M there exists an induced tangent map between the
corresponding tangent spaces, @« : Tp(M) — T4(N), where ¢ = ¢(p). The
crucial point is that the properties of the tangent map ¢, at p € M determine
the properties of the map ¢ in a neighborhood of p. A classical result in this
regard is the inverse function theorem in calculus.

Theorem 3.1. Suppose W is an open subset of R™ and f : W — R" is a
smooth map. If at a point xo € W the determinant of the Jacobian matriz is

nonzero, i.e.,
aft
o (525)].

#0,
o



